સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો.
$5$
$6$
$7$
$8$
જો ${\log _e}\left( {{{a + b} \over 2}} \right) = {1 \over 2}({\log _e}a + {\log _e}b)$, તો $a$ અને $b$ વચ્ચેનો સંબંધ મેળવો.
${\log _2}7$ એ . . . . થાય.
જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
સમીકરણ $log_7(2^x -1) + log_7(2^x -7) = 1$ ના ઉકેલોની સંખ્યા મેળવો.
જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $