જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
$2.{{3 - a} \over {3 + a}}$
$3.{{3 - a} \over {3 + a}}$
$4.{{3 - a} \over {3 + a}}$
એકપણ નહી.
જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
${\log _2}7$ એ . . . . થાય.