જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
$2.{{3 - a} \over {3 + a}}$
$3.{{3 - a} \over {3 + a}}$
$4.{{3 - a} \over {3 + a}}$
એકપણ નહી.
${(0.05)^{{{\log }_{_{\sqrt {20} }}}(0.1 + 0.01 + 0.001 + ......)}}= . .$ . .
કોઈ સંખ્યા $\alpha $ માટે ચડતો કર્મ મેળવો.
જો ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1),$ તો $x$ નો અંતરાલ મેળવો.
ધારોકે $a,b,c$ એ એવી ત્રણ ભિન્ન વાસ્તવિક સંખ્યાઓ છે કે જેથી $(2 a)^{\log _e a}=(b c)^{\log _e b}$ અને $b^{\log _e 2}=a^{\log _e c}$ તો $6 a+5 b c=..........$
${\log _2}7$ એ . . . . થાય.