જો ${\log _{12}}27 = a,$ તો ${\log _6}16 = $
$2.{{3 - a} \over {3 + a}}$
$3.{{3 - a} \over {3 + a}}$
$4.{{3 - a} \over {3 + a}}$
એકપણ નહી.
જો $y = {\log _a}x$ એ વ્યાખ્યાતીત હોય તો $'a'$ એ . . . હોવો જોઈએ.
${2^{{{\log }_{\sqrt 2 }}(x - 1)}} > x + 5$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
જો ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ તો $x = . . . .$
ધારોકે $a,b,c$ એ એવી ત્રણ ભિન્ન વાસ્તવિક સંખ્યાઓ છે કે જેથી $(2 a)^{\log _e a}=(b c)^{\log _e b}$ અને $b^{\log _e 2}=a^{\log _e c}$ તો $6 a+5 b c=..........$
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .