સમીકરણ ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$ નો ઉકેલ મેળવો.
${\log _9}(9/\sqrt 8 )$
${\log _{\left( {9/2} \right)}}(9/\sqrt 8 )$
${\log _e}(9/\sqrt 8 )$
એકપણ નહીં
જો $a = \sqrt {(21)} - \sqrt {(20)} $ અને $b = \sqrt {(18)} - \sqrt {(17),} $ તો
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
સમીકરણ ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ નો ઉકેલ મેળવો.
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $