સાબિત કરો કે $(1+x)^{2 n}$ ના વિસ્તરણનું મધ્યમ પદ $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n}$ છે, જ્યાં $n$ ધન પૂર્ણાક છે.
As $2 n$ is even, the middle term of the expansion $(1+x)^{2 n}$ is $\left(\frac{2 n}{2}+1\right)^{\text {th }}$
i.e., $(n+1)^{\text {th }}$ term which is given by,
${T_{n + 1}} = {\,^{2n}}{C_n}{(1)^{2n - n}}{(x)^n} = {\,^{2n}}{C_n}{x^n} = \frac{{(2n)!}}{{n!n!}}{x^n}$
$=\frac{2 n(2 n-1)(2 n-2) \ldots 4.3 .2 .1}{n ! n !} x^{n}$
$=\frac{1.2 .3 .4 \ldots(2 n-2)(2 n-1)(2 n)}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)][2.4 .6 \ldots .(2 n)]}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)] 2^{n}[1.2 .3 \dots n]}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)] n !}{n ! n !} 2^{n} \cdot x^{n}$
$=\frac{1.3 .5 \ldots(2 n-1)}{n !} 2^{n} x^{n}$
જો $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ ના વિસ્તરણમાં $x^7$ નો સહગુણક અને $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ ના વિસ્તરણમાં $x ^{-7}$ નો સહગુણક સમાન હોય તો . . ..
${(1 + x + {x^2} + {x^3})^n}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.
$(x+2 y)^{9}$ ના વિસ્તરણમાં $x^{6} y^{3}$ નો સહગુણક શોધો.
${\left( {1 + {x^n} + {x^{253}}} \right)^{10}}$ ના વિસ્તરણમાં $x^{1012}$ સહગુણક કેટલો થાય ? (જ્યાં $n \leq 22$ એ કોઈ પણ ધન પૃણાંક છે )
દ્વિપદી પ્રમેયનો ઉપયોગ કરી, $(1+2 x)^{6}(1-x)^{7}$ ના ગુણાકારમાં $x^{5}$ નો સહગુણક શોધો.