Show that the middle term in the expansion of $(1+x)^{2 n}$ is
$\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ where $n$ is a positive integer.
As $2 n$ is even, the middle term of the expansion $(1+x)^{2 n}$ is $\left(\frac{2 n}{2}+1\right)^{\text {th }}$
i.e., $(n+1)^{\text {th }}$ term which is given by,
${T_{n + 1}} = {\,^{2n}}{C_n}{(1)^{2n - n}}{(x)^n} = {\,^{2n}}{C_n}{x^n} = \frac{{(2n)!}}{{n!n!}}{x^n}$
$=\frac{2 n(2 n-1)(2 n-2) \ldots 4.3 .2 .1}{n ! n !} x^{n}$
$=\frac{1.2 .3 .4 \ldots(2 n-2)(2 n-1)(2 n)}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)][2.4 .6 \ldots .(2 n)]}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)] 2^{n}[1.2 .3 \dots n]}{n ! n !} x^{n}$
$=\frac{[1.3 .5 \ldots(2 n-1)] n !}{n ! n !} 2^{n} \cdot x^{n}$
$=\frac{1.3 .5 \ldots(2 n-1)}{n !} 2^{n} x^{n}$
If $n$ is the degree of the polynomial,
${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ and $m$ is the coefficient of $x^{12}$ in it, then the ordered pair $(n, m)$ is equal to
In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to
If the coefficients of $(r-5)^{th}$ and $(2 r-1)^{th}$ terms in the expansion of $(1+x)^{34}$ are equal, find $r$
The term independent of $x$ in the expansion of ${\left( {2x - \frac{3}{x}} \right)^6}$ is
The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1+x)^{19}$ is $....$