સાબિત કરો કે રેખાઓ$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ અને $x=0$ વડે રચાતા ત્રિકોણનું ક્ષેત્રફળ $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ શોધો.
Given lines are
$y=m_{1} x+c_{1}$.....$(1)$
$y=m_{1} x+c_{2}$.....$(2)$
$x=0$.....$(3)$
We know that line $y=m x+c$ meets the line $x=0$ ($y-$ axis) at the point $(0, c) .$ Therefore, two vertices of the triangle formed by lines $(1)$ to $(3)$ are $\left. P \left(0, c_{1}\right) \text { and } Q \left(0, c_{2}\right) \text { (Fig } .\right)$
Third vertex can be obtained by solving equations $( 1 )$ and $( 2 )$. Solving $(1)$ and $(2)$, we get
$x=\frac{\left(c_{2}-c_{1}\right)}{\left(m_{1}-m_{2}\right)}$ and $y=\frac{\left(m_{1} c_{2}-m_{2} c_{1}\right)}{\left(m_{1}-m_{2}\right)}$
Now, the area of the triangle is
$=\frac{1}{2} | 0\left(\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}-c_{2}\right)+\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\left(c_{2}-c_{1}\right)+0\left(c_{1}-\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)=\frac{\left(c_{2}-c_{1}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$
$25$ ચોરસ એકમ ક્ષેત્રફળવાળા એક ચતુષ્કોણની બે બાજુઓનું સમીકરણ $3x - 4y = 0$ અને $4x + 3y = 0$ છે. ચતુષ્કોણની બાકીની બે બાજુઓનું સમીકરણ :
ચલિત રેખા $\frac{x}{a} + \frac{y}{b} = 1, a + b = 10$ માટે, યામ અક્ષો વચ્ચે આ રેખાના અંત: ખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ
રેખાઓ $x = 0,\;y = 0,\;x + y = 1$ અને $6x + y = 3,$ થી બનતા ચતુષ્કોણના ઊગમબિંદુમાંથી પસાર થતા વિર્કણનું સમીકરણ મેળવો.
જો ચોરસના વિકર્ણમાંથી એક વિકર્ણ રેખા $ x = 2y$ ની દિશામાં હોય અને તેનું એક શિરોબિંદુ $(3, 0) $હોય, તો આ શિરોબિંદુમાંથી પસાર થતી તેની બાજુઓના સમીકરણો....