दर्शाइए कि रेखाओं

$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ और $x=0$ से बने त्रिभुज का क्षेत्रफल $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Given lines are

$y=m_{1} x+c_{1}$.....$(1)$

$y=m_{1} x+c_{2}$.....$(2)$

$x=0$.....$(3)$

We know that line $y=m x+c$ meets the line $x=0$ ($y-$ axis) at the point $(0, c) .$ Therefore, two vertices of the triangle formed by lines $(1)$ to $(3)$ are $\left. P \left(0, c_{1}\right) \text { and } Q \left(0, c_{2}\right) \text { (Fig } .\right)$

Third vertex can be obtained by solving equations $( 1 )$ and $( 2 )$. Solving $(1)$ and $(2)$, we get

$x=\frac{\left(c_{2}-c_{1}\right)}{\left(m_{1}-m_{2}\right)}$ and $y=\frac{\left(m_{1} c_{2}-m_{2} c_{1}\right)}{\left(m_{1}-m_{2}\right)}$

Now, the area of the triangle is

$=\frac{1}{2} | 0\left(\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}-c_{2}\right)+\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\left(c_{2}-c_{1}\right)+0\left(c_{1}-\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)=\frac{\left(c_{2}-c_{1}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$

872-s89

Similar Questions

दूरी सूत्र का प्रयोग किए बिना दिखलाइए कि बिंदु $(-2,-1),(4,0),(3,3)$ और $(-3,2)$ एक समांतर चतुर्भुज के शीर्ष हैं।

यदि समान्तर चतुभुज के निर्देशांक क्रमश: $(0, 0)$, $(1, 0)$ $(2, 2)$ तथा $(1, 2)$ हैं, तो विकर्णों के बीच कोण है

माना एक त्रिभुज की दो भुजाओं के समीकरण $3 x -2 y +6=0$ तथा $4 x +5 y -20=0$ हैं। यदि इस त्रिभुज का लम्बकेंद्र $(1,1)$ पर है, तो इसकी तीसरी भुजा का समीकरण है

  • [JEE MAIN 2019]

किसी समान्तर चतुभुज की दो आस भुजायें $4x + 5y = 0$ व $7x + 2y = 0$ हैं। यदि एक विकर्ण का समीकरण $11x + 7y = 9$ हो, तो दूसरे विकर्ण का समीकरण है

  • [IIT 1970]

यदि किसी समबाहु त्रिभुज का केन्द्रक $(0, 0)$ एवं एक भुजा $x + y - 2 = 0$ हो, तो उसका एक शीर्ष होगा