ગણ $A$ અને $B$ માં અનુક્રમે $3$ અને $6$ સભ્યો હોય તો $A \cup B$ ની ન્યૂનતમ સભ્ય સંખ્યા મેળવો.
$3$
$6$
$9$
$18$
જો $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6\}, C = \{3, 4, 6\},$ તો $(A \cup B) \cap C$ મેળવો.
જો $X=\{a, b, c, d\}$ અને $Y=\{f, b, d, g\},$ તો મેળવો : $X-Y$
ધારો કે $A :\{1,2,3,4,5,6,7\}$. ગણ $B =\{ T \subseteq A$ : $1 \notin T$ અથવા $2 \in T \}$ મુજબ છે અને ગણ $C = \{ T \subseteq A : T$ કે જેથી ગણ $T$ ના બધા ઘટકોનો સરવાળો અવિભાજ્ય છે $\}$. તો ગણ $B \cup C$ ના ઘટકોનો સંખ્યા $\dots\dots$ થાય.
જો $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ અને $D=\{15,17\} ;$ હોય, તો શોધો : $A \cap B$
જો ગણ $A$ અને $B$ માટે$A = \{ (x,\,y):y = {e^x},\,x \in R\} $; $B = \{ (x,\,y):y = x,\,x \in R\} ,$ હોય તો . .