આપેલ સંબંધ જુઓ :
$(1) \,\,\,A - B = A - (A \cap B)$
$(2) \,\,\,A = (A \cap B) \cup (A - B)$
$(3) \,\,\,A - (B \cup C) = (A - B) \cup (A - C)$
પૈકી . . . . સત્ય છે.
$1$ અને $3$
માત્ર $2$
$2$ અને $3$
$1$ અને $ 2$
યોગગણ લખો : $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $1\, < \,x\, \le \,6\} ,$ $B = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6\, < \,x\, < \,10\} $
$A=\{a, b\}, B=\{a, b, c\}$ લો. $A \subset B $ છે ? $A \cup B $ શું થશે ?
એક સ્કૂલમાં ત્રણ રમત રમાડવામાં આવે છે . કેટલાક વિધાર્થી બે પ્રકારની રમત રમે છે પરંતુ ત્રણેય રમત રમતા નથી . આપેલ પૈકી કઈ વેન આકૃતિઓ ઉપરોક્ત વિધાનને સમર્થન કરે છે .
જો $X = \{ {4^n} - 3n - 1:n \in N\} $ અને $Y = \{ 9(n - 1):n \in N\} ,$ તો $X \cup Y$ = . . . . .
છેદગણ શોધો : $A = \{ x:x$ એ $3$ ની ગુણિત પ્રાકૃતિક સંખ્યા છે. $\} ,$ $B = \{ x:x$ એ $6$ થી નાની પ્રાકૃતિક સંખ્યા છે. $\} $