Rationalise the denominator of $\frac{5}{\sqrt{3}-\sqrt{5}}$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here we use the Identity $(iii)$ given earlier.

So, $\frac{5}{\sqrt{3}-\sqrt{5}}=\frac{5}{\sqrt{3}-\sqrt{5}} \times \frac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=\frac{5(\sqrt{3}+\sqrt{5})}{3-5}=\left(\frac{-5}{2}\right)(\sqrt{3}+\sqrt{5})$

Similar Questions

Represent $ \sqrt{9.3}$ on the number line.

Find six rational numbers between $3$ and $4$.

Is zero a rational number ? Can you write it in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \ne 0$ ?

What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$ ?

Find :

$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$

$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$

$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$

$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$