Represent $ \sqrt{9.3}$ on the number line.
Find six rational numbers between $3$ and $4$.
Is zero a rational number ? Can you write it in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \ne 0$ ?
What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$ ?
Find :
$(i)$ $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}$
$(ii)$ $\left(\frac{1}{3^{3}}\right)^{7}$
$(iii)$ $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$
$(iv)$ $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$