Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
$L.H.S.=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)$
$=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)$
$=\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right)$
$=\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A}$
$=\sin A \cos A$
$R.H.S=\frac{1}{\tan A+\cot A}$
$=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{1}{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}$
$=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin A \cos A$
Hence,$L . H . S=R . H . S$
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$
Show that:
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$