Given $15 \cot A =8,$ find $\sin A$ and $\sec A .$
Consider a right-angled triangle, right-angled at $B.$
$\cot A=\frac{\text { Side adjacent to } \angle A }{\text { Side opposite to } \angle A }$
$=\frac{A B}{B C}$
It is given that,
$\cot A=\frac{8}{15}$
$\frac{A B}{B C}=\frac{8}{15}$
Let $AB$ be $8 k$. Therefore, $BC$ will be $15 k ,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$AC =17 k$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$
$=\frac{15 k}{17 k}=\frac{15}{17}$
$\sec A=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle A }$
$=\frac{ AC }{ AB }=\frac{17}{8}$
In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$
Evaluate:
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
Prove that
$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta},$ using the identity
$\sec ^{2} \theta=1+\tan ^{2} \theta$