Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

  • A

    $2$

  • B

    $-1$

  • C

    $0$

  • D

    $1$

Similar Questions

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$

If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$