સાબિત કરો કે : $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}$

$=\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$

$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y)$

$=1+1+2 \cos (x+y) \quad[\cos (A+B)=(\cos A \cos B-\sin A \sin B)]$

$=2+2 \cos (x+y)$

$=2[1+\cos (x+y)]$

$=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right] \quad\left[\cos 2 A=2 \cos ^{2} A-1\right]$

$=4 \cos ^{2}\left(\frac{x+y}{2}\right)= R.H . S.$

Similar Questions

જો  $x = \sec \theta + \tan \theta ,$ તો  $x + \frac{1}{x} = $

સાબિત કરો કે : $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$

$\sin \frac{x}{2}, \cos \frac{x}{2}$ અને $\tan \frac{x}{2}$ ની કિંમતો શોધો.:  $\tan x=\frac{-4}{3}, x$ એ બીજા ચરણમાં છે.

જો  $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, તો  ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $

જો $\tan \theta + \sin \theta = m$  અને $\tan \theta - \sin \theta = n,$ તો

  • [IIT 1970]