Prove that: $(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2} \frac{x+y}{2}$
$L.H.S.$ $=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}$
$=\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y)$
$=1+1+2 \cos (x+y) \quad[\cos (A+B)=(\cos A \cos B-\sin A \sin B)]$
$=2+2 \cos (x+y)$
$=2[1+\cos (x+y)]$
$=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right] \quad\left[\cos 2 A=2 \cos ^{2} A-1\right]$
$=4 \cos ^{2}\left(\frac{x+y}{2}\right)= R.H . S.$
Prove that: $(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2} \frac{x-y}{2}$
$\cos 1^\circ + \cos 2^\circ + \cos 3^\circ + ..... + \cos 180^\circ = $
Convert $6$ radians into degree measure.
If $\cos x=-\frac{3}{5}, x$ lies in the third quadrant, find the values of other five trigonometric functions.
If $x + \frac{1}{x} = 2\cos \alpha $, then ${x^n} + \frac{1}{{{x^n}}} = $