અંશ માપ શોધો. ( $\pi=\frac{22}{7}$ લો. ) $-4$
We know that $\pi$ radian $=180^{\circ}$
$-4$ radian $=\frac{180}{\pi} \times(-4)$ degree
$=\frac{180 \times 7(-4)}{22}$ degree
$=\frac{-2520}{11}$ degree $=-229 \frac{1}{11}$ degree
$=-229^{\circ}+\frac{1 \times 60}{11}$ minutes $\left[1^{\circ}=60^{\prime}\right]$
$=-229^{\circ}+5^{\prime}+\frac{5}{11}$ minutes
$=-229^{\circ} 5^{\prime} 27^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
જો $\sin \theta = - \frac{1}{{\sqrt 2 }}$ અને $\tan \theta = 1,$ તો $\theta $ એ ક્યાં ચરણમાં છે ?
સાબિત કરો કે : $\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}$
જો $x = \sec \,\phi - \tan \phi,y = {\rm{cosec}}\phi+ \cot \phi,$ તો
જો $\sin x + {\sin ^2}x = 1$, તો ${\cos ^{12}}x + 3{\cos ^{10}}x + 3{\cos ^8}x + {\cos ^6}x - 2 =$
સાબિત કરો કે : $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$