સાબિત કરો કે : $\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)$

$=\frac{1}{2}\left[2 \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)\right]+\frac{1}{2}\left[-2 \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\right]$

$=\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}+\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right]$

$+\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}-\cos \left\{\frac{\pi}{4}-x\right\}-\left(\frac{\pi}{4}-y\right)\right]$

$\left[ \begin{gathered}
  \because 2\cos A\cos B = \cos (A + B) + \cos (A - B) \hfill \\
   - 2\sin A\sin B = \cos (A + B) - \cos (A - B) \hfill \\ 
\end{gathered}  \right]$

$=2 \times \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right]$

$=\cos \left[\frac{\pi}{4}-(x+y)\right]$

$=\sin (x+y)$

$= R . H.S$

Similar Questions

$6$ રેડિયનને અંશ માપમાં ફેરવો.

કિંમત શોધો : $\sin 75^{\circ}$

જો $\frac{{3\pi }}{4} < \alpha < \pi ,$ તો $\sqrt {{\rm{cose}}{{\rm{c}}^2}\alpha + 2\cot \alpha }  = . . .$

જો  $A$ એ બીજા ચરણમાં હોય અને  $3\tan A + 4 = 0,$ તો  $2\cot A - 5\cos A + \sin A$ ની કિમત મેળવો. 

${\sin ^2}{5^o} + {\sin ^2}{10^o} + {\sin ^2}{15^o} + ... + $ ${\sin ^2}{85^o} + {\sin ^2}{90^o}  = . ..$