જો $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ અને $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ તો ${(m + n)^{2/3}} + {(m - n)^{2/3}} = . . .$
$2{a^2}$
$2{a^{1/3}}$
$2{a^{2/3}}$
$2{a^3}$
સમીકરણ ${(a + b)^2} = 4ab\,\,{\sin ^2}\theta $ તોજ શક્ય છે જો . . . .
$\cos 1^\circ .\cos 2^\circ .\cos 3^\circ .........\cos 179^\circ = $
$2({\sin ^6}\theta + {\cos ^6}\theta ) - 3({\sin ^4}\theta + {\cos ^4}\theta ) + 1 =$
જો $p = \frac{{2\sin \,\theta }}{{1 + \cos \theta + \sin \theta }}$, અને $q = \frac{{\cos \theta }}{{1 + \sin \theta }},$ તો
જો $\sin \theta + {\rm{cosec}}\theta = {\rm{2}}$, તો ${\sin ^2}\theta + {\rm{cose}}{{\rm{c}}^{\rm{2}}}\theta = $