Position of a body with acceleration '$a$' is given by $x = K{a^m}{t^n},$ here $t$ is time. Find dimension of $m$ and $n$.
$m = 1$, $n = 1$
$m = 1,\;n = 2$
$m = 2,\;n = 1$
$m = 2,\;n = 2$
If the time period $(T)$ of vibration of a liquid drop depends on surface tension $(S)$, radius $(r)$ of the drop and density $(\rho )$ of the liquid, then the expression of $T$ is
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
The amount of heat energy $Q$, used to heat up a substance depends on its mass $m$, its specific heat capacity $(s)$ and the change in temperature $\Delta T$ of the substance. Using dimensional method, find the expression for $s$ is (Given that $\left.[s]=\left[ L ^2 T ^{-2} K ^{-1}\right]\right)$ is
Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$