If the time period $(T)$ of vibration of a liquid drop depends on surface tension $(S)$, radius $(r)$ of the drop and density $(\rho )$ of the liquid, then the expression of $T$ is

  • A

    $T = k\sqrt {\rho {r^3}/S} $

  • B

    $T = k\sqrt {{\rho ^{1/2}}{r^3}/S} $

  • C

    $T = k\sqrt {\rho {r^3}/{S^{1/2}}} $

  • D

    None of these

Similar Questions

A new unit of length is chosen such that the speed of light in vacuum is unity. What is the distance between the Sun and the Earth in terms of the new unit if light takes $8\; min$ and $20\; s$ to cover this distance?

Time $(T)$, velocity $(C)$ and angular momentum $(h)$ are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be

  • [JEE MAIN 2017]

If $P$ represents radiation pressure, $c$ represents speed of light and $Q$ represents radiation energy striking a unit area per second, then non-zero integers $x,\,y$ and $z$ such that ${P^x}{Q^y}{c^z}$ is dimensionless, are

  • [AIPMT 1992]

An expression of energy density is given by $u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$, where $\alpha, \beta$ are constants, $x$ is displacement, $k$ is Boltzmann constant and $t$ is the temperature. The dimensions of $\beta$ will be.

  • [JEE MAIN 2022]

Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as  $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$

$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.

$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation  is dimensionally incorrect. Write the correct relation.