The amount of heat energy $Q$, used to heat up a substance depends on its mass $m$, its specific heat capacity $(s)$ and the change in temperature $\Delta T$ of the substance. Using dimensional method, find the expression for $s$ is (Given that $\left.[s]=\left[ L ^2 T ^{-2} K ^{-1}\right]\right)$ is

  • A

    $Q m \Delta T$

  • B

    $\frac{Q}{m \Delta T}$

  • C

    $\frac{Q m}{\Delta T}$

  • D

    $\frac{m}{Q \Delta T}$

Similar Questions

Given that $K =$ energy, $V =$ velocity, $T =$ time. If they are chosen as the fundamental units, then what is dimensional formula for surface tension?

If the velocity of light $c$, universal gravitational constant $G$ and planck's constant $h$ are chosen as fundamental quantities. The dimensions of mass in the new system is

  • [JEE MAIN 2023]

A beaker contains a fluid of density $\rho \, kg / m^3$, specific heat $S\, J / kg\,^oC$ and viscosity $\eta $. The beaker is filled upto height $h$. To estimate the rate of heat transfer per unit area $(Q / A)$ by convection when beaker is put on a hot plate, a student proposes that it should depend on $\eta \,,\,\left( {\frac{{S\Delta \theta }}{h}} \right)$ and $\left( {\frac{1}{{\rho g}}} \right)$ when $\Delta \theta $ (in $^oC$) is the difference in the temperature between the bottom and top of the fluid. In that situation the correct option for $(Q / A)$ is

  • [JEE MAIN 2015]

The position of a particle at time $t$ is given by the relation $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$, where ${v_0}$ is a constant and $\alpha > 0$. The dimensions of ${v_0}$ and $\alpha $ are respectively

The potential energy of a point particle is given by the expression $V(x)=-\alpha x+\beta \sin (x / \gamma)$. A dimensionless combination of the constants $\alpha, \beta$ and $\gamma$ is

  • [KVPY 2012]