Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as  $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$

$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.

$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation  is dimensionally incorrect. Write the correct relation.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(a)$ We know that,

$1 \mathrm{amu}= 1 u=1.67 \times 10^{-27} \mathrm{~kg}$

$\text { Applying } \mathrm{E}=m c^{2}$

$\text { Energy } =\mathrm{E}=\left(1.67 \times 10^{-27}\right)\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$

$ 1.67 \times 9 \times 10^{-11} \mathrm{~J}$

$\mathrm{E} =\frac{1.67 \times 9 \times 10^{-11}}{1.6 \times 10^{-13}} \mathrm{MeV}$

$=939.4 \mathrm{MeV} \approx 931.5 \mathrm{MeV}$

$(b)$ The dimensionally correct relation is, $1 \mathrm{amu} \times c^{2}=1 u \times c^{2}=931.5 \mathrm{MeV}$

Similar Questions

The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is

  • [AIPMT 1996]

If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.

  • [NEET 2021]

If $x$  and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is  $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $

The velocity of water waves $v$ may depend upon their wavelength $\lambda $, the density of water $\rho $ and the acceleration due to gravity $g$. The method of dimensions gives the relation between these quantities as

If the time period $t$ of the oscillation of a drop of liquid of density $d$, radius $r$, vibrating under surface tension $s$ is given by the formula $t = \sqrt {{r^{2b}}\,{s^c}\,{d^{a/2}}} $ . It is observed that the time period is directly proportional to $\sqrt {\frac{d}{s}} $ . The value of $b$ should therefore be

  • [JEE MAIN 2013]