Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass $(m)$ to energy $(E)$ as $E = mc^2$, where $c$ is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in $MeV$, where $1\,MeV = 1.6\times 10^{-13}\,J$ ; the masses are measured i unified atomicm mass unit (u) where, $1\,u = 1.67 \times 10^{-27}\, kg$
$(a)$ Show that the energy equivalent of $1\,u$ is $ 931.5\, MeV$.
$(b)$ A student writes the relation as $1\,u = 931.5\, MeV$. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
$(a)$ We know that,
$1 \mathrm{amu}= 1 u=1.67 \times 10^{-27} \mathrm{~kg}$
$\text { Applying } \mathrm{E}=m c^{2}$
$\text { Energy } =\mathrm{E}=\left(1.67 \times 10^{-27}\right)\left(3 \times 10^{8}\right)^{2} \mathrm{~J}$
$ 1.67 \times 9 \times 10^{-11} \mathrm{~J}$
$\mathrm{E} =\frac{1.67 \times 9 \times 10^{-11}}{1.6 \times 10^{-13}} \mathrm{MeV}$
$=939.4 \mathrm{MeV} \approx 931.5 \mathrm{MeV}$
$(b)$ The dimensionally correct relation is, $1 \mathrm{amu} \times c^{2}=1 u \times c^{2}=931.5 \mathrm{MeV}$
The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right) = \frac{{b\theta }}{l}$ Where $P$ is the pressure, $V$ the volume, $\theta $ the absolute temperature and $a$ and $b$ are constants. The dimensional formula of $a$ is
If force $[F],$ acceleration $[A]$ and time $[T]$ are chosen as the fundamental physical quantities. Find the dimensions of energy.
If $x$ and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $
The velocity of water waves $v$ may depend upon their wavelength $\lambda $, the density of water $\rho $ and the acceleration due to gravity $g$. The method of dimensions gives the relation between these quantities as