समाक्ष (coaxial) वृत्त निकाय ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x - 4y + 3 = 0$ का एक सीमान्त बिन्दु है
$( - 1,\,1)$
$( - 1,\,2)$
$( - 2,\,1)$
$( - 2,\,2)$
$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
दो वत्तों
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-16 x -10 y +80=0$
के लिए असत्य कथन चुनिए
दो वृत्तों $x^{2}+y^{2}=16$ तथा $x^{2}+y^{2}-2 y=0$, के लिए है
दो वत्तों जिनके समीकरण
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-22 x -10 y +137=0$ हैं, के लिए सही कथन चुनिए
माना समीकरण $x ^{2}+ y ^{2}+ px +(1- p ) y +5=0$ उन वर्तों को दर्शाती है, जिनकी चर त्रिज्या $I \in(0,5]$ है। तो समुच्चय $S =\left\{ q : q = p ^{2}\right.$ तथा $q$ एक पूर्णाक है $\}$ में अवयवों की संख्या है ......... |