One of the limit point of the coaxial system of circles containing ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x$ $ - 4y + 3 = 0$ is
$( - 1,\,1)$
$( - 1,\,2)$
$( - 2,\,1)$
$( - 2,\,2)$
If two circles ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ and ${x^2} + {y^2} - 8x + 2y + 8 = 0$ intersect in two distinct points, then
Let $C_i \equiv x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-
The two circles ${x^2} + {y^2} - 2x + 6y + 6 = 0$ and ${x^2} + {y^2} - 5x + 6y + 15 = 0$
Suppose we have two circles of radius 2 each in the plane such that the distance between their centers is $2 \sqrt{3}$. The area of the region common to both circles lies between
The number of common tangents to two circles ${x^2} + {y^2} = 4$ and ${x^2} - {y^2} - 8x + 12 = 0$ is