Obtain the scalar product of two mutually perpendicular vectors.
$\text { If } \vec{A} \perp \vec{B}, \text { then } \theta=90^{\circ}$
$\therefore \quad \vec{A} \cdot \vec{B}=\mathrm{ABcos} 90^{\circ}$
$=0$
$\because \cos 90^{\circ}=0$
This is the condition for mutually perpendicular of two non-zero vectors.
Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$
If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be
When $\vec A.\vec B = - |A||B|,$ then