Obtain the scalar product of two mutually perpendicular vectors.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\text { If } \vec{A} \perp \vec{B}, \text { then } \theta=90^{\circ}$

$\therefore \quad \vec{A} \cdot \vec{B}=\mathrm{ABcos} 90^{\circ}$

$=0$

$\because \cos 90^{\circ}=0$

This is the condition for mutually perpendicular of two non-zero vectors.

Similar Questions

Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$

If $\vec A,\vec B$ and $\vec C$ are vectors having a unit magnitude. If $\vec A + \vec B + \vec C = \vec 0$ then $\vec A.\vec B + \vec B.\vec C + \vec C.\vec A$ will be 

When $\vec A.\vec B = - |A||B|,$ then

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

Given $A =3 \hat{ i }+4 \hat{ j }$ and $B =6 \hat{ i }+8 \hat{ j }$, which of the following statement is correct?