Given $A =3 \hat{ i }+4 \hat{ j }$ and $B =6 \hat{ i }+8 \hat{ j }$, which of the following statement is correct?

  • A
    $A \times B =0$
  • B
    $\frac{| A |}{| B |}=\frac{1}{2}$
  • C
    $(a)$ and $(b)$
  • D
    $A \cdot| B |=48$

Similar Questions

Given $\left| {{\vec A_1}} \right| = 2,\,\left| {{\vec A_2}} \right| = 3$ and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 3$.  Find the value or $\left| {\left( {{{\vec A}_1} + 2{{\vec A}_2}} \right) \times \left( {3{{\vec A}_1} - 4{{\vec A}_2}} \right)} \right|$

Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.

If $F _1$ and $F _2$ are two vectors of equal magnitudes $F$ such that $\left| F _1 \cdot F _2\right|=\left| F _1 \times F _2\right|$, then $\left| F _1+ F _2\right|$ equals to

If $a + b + c =0$ then $a \times b$ is

Dot product of two mutual perpendicular vector is