Find the scalar and vector products of two vectors. $a =(3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ and $b =(- 2 \hat{ i }+\hat{ j }- 3 \hat { k } )$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\begin{aligned} a \cdot b &=(3 \hat{ i }-4 \hat{ j }+5 \hat{ k }) \cdot(-2 \hat{ i }+\hat{ j }-3 \hat{ k }) \\ &=-6-4-15 \\ &=-25 \end{aligned}$

$a \times b =\left|\begin{array}{ccc}\hat{ i } & \hat{ j } & \hat{ k } \\ 3 & -4 & 5 \\ -2 & 1 & -3\end{array}\right|=7 \hat{ i }-\hat{ j }-5 \hat{ k }$

$b \times a =-7 \hat{ i }+\hat{ j }+5 \hat{ k }$

Similar Questions

Why the product of two vectors is not commutative ?

If $a + b + c =0$ then $a \times b$ is

The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

If $F _1$ and $F _2$ are two vectors of equal magnitudes $F$ such that $\left| F _1 \cdot F _2\right|=\left| F _1 \times F _2\right|$, then $\left| F _1+ F _2\right|$ equals to

Explain the geometrical interpretation of scalar product of two vectors.