Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
$25$
$1$
$3$
both (b) and (c)
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and ${b^2} = ac$ then $x + z = $
If ${x^y} = {y^x},$then ${(x/y)^{(x/y)}} = {x^{(x/y) - k}},$ where $k = $
If ${{{{({2^{n + 1}})}^m}({2^{2n}}){2^n}} \over {{{({2^{m + 1}})}^n}{2^{2m}}}} = 1,$ then $m =$
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is