Number of solutions of equation $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ in $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$  is

(where $sgn(.)$ denotes signum function) -

  • A

    $10$

  • B

    $6$

  • C

    $13$

  • D

    $9$

Similar Questions

The number of solutions of the equation $4 \sin ^2 x-4$ $\cos ^3 \mathrm{x}+9-4 \cos \mathrm{x}=0 ; \mathrm{x} \in[-2 \pi, 2 \pi]$ is :

  • [JEE MAIN 2024]

If both roots of quadratic equation ${x^2} + \left( {\sin \,\theta  + \cos \,\theta } \right)x + \frac{3}{8} = 0$ are positive and distinct then complete set of values of $\theta $ in $\left[ {0,2\pi } \right]$ is 

If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is