Number of solution$(s)$ of the equation $ln(1 + sin^2x) = 1 -ln(5 + x^2)$ is -
$0$
$1$
$2$
$5$
If $\sin \theta + 2\sin \phi + 3\sin \psi = 0$ and $\cos \theta + 2\cos \phi + 3\cos \psi = 0$ , then the value of $\cos 3\theta + 8\cos 3\phi + 27\cos 3\psi = $
Let $f:[0,2] \rightarrow R$ be the function defined by
$f ( x )=(3-\sin (2 \pi x )) \sin \left(\pi x -\frac{\pi}{4}\right)-\sin \left(3 \pi x +\frac{\pi}{4}\right)$
If $\alpha, \beta \in[0,2]$ are such that $\{x \in[0,2]: f(x) \geq 0\}=[\alpha, \beta]$, then the value of $\beta-\alpha$ is. . . . . . . . .
Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are
If $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots \ldots \infty\right) \log _{e} 2}$ satisfies the equation $t ^{2}-9 t +8=0,$ then the value of $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ is
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is