Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x  \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
 

  • A

    $10$

  • B

    $12$

  • C

    $14$

  • D

    $16$

Similar Questions

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

If $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, then the general value of $\theta $ is

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

The equation $5x^2+12x + 13 = 0$ and $ax^2+bx + c = 0$ have a common root, where $a,b,c$ are the sides of $\Delta ABC$,then find $\angle C$ ? .....$^o$

The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta  = 2,$ is