Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x  \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-
 

  • A

    $10$

  • B

    $12$

  • C

    $14$

  • D

    $16$

Similar Questions

If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is

If $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ then $\theta = $

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

The values of $\theta $ satisfying $\sin 7\theta = \sin 4\theta - \sin \theta $ and $0 < \theta < \frac{\pi }{2}$ are

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$