Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then

  • [JEE MAIN 2023]
  • A

    $\Delta=\wedge, \nabla=\vee$

  • B

    $\Delta=\vee, \nabla=\wedge$

  • C

    $\Delta=v, \nabla=v$

  • D

    $\Delta=\wedge, \nabla=\wedge$

Similar Questions

The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to

  • [JEE MAIN 2023]

If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]

The Boolean expression $\sim\left( {p\; \vee q} \right) \vee \left( {\sim p \wedge q} \right)$ is equivalent ot :

  • [JEE MAIN 2018]

The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:

  • [JEE MAIN 2021]

The negative of the statement $\sim p \wedge(p \vee q)$ is

  • [JEE MAIN 2021]