Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then
$\Delta=\wedge, \nabla=\vee$
$\Delta=\vee, \nabla=\wedge$
$\Delta=v, \nabla=v$
$\Delta=\wedge, \nabla=\wedge$
The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
The Boolean expression $\sim\left( {p\; \vee q} \right) \vee \left( {\sim p \wedge q} \right)$ is equivalent ot :
The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:
The negative of the statement $\sim p \wedge(p \vee q)$ is