વિધાનનું નિષેધ કરો : - $\sqrt{5}$ એ પૂર્ણાંક છે અથવા $5$ એ અસંમેય છે .
$\sqrt{5}$ એ પૂર્ણાંક છે અથવા $5$ એ અસંમેય છે .
$\sqrt{5}$ એ અપૂર્ણાંક છે અને $5$ એ અસંમેય નથી .
$\sqrt{5}$ એ પૂર્ણાંક છે અને $5$ એ અસંમેય છે .
$\sqrt{5}$ એ પૂર્ણાંક નથી અથવા $5$ એ અસંમેય નથી .
$p, q, r$અને s ને તેમના સત્યાર્થતા મૂલ્યો આપતાં, સંયુક્ત વિધાનો $p \vee r \vee s , p \vee r \vee \sim s , p \vee \sim q \vee s , \sim p \vee \sim r \vee s$, $\sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s , q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$ માંથી મહત્તમ કેટલા વિધાનો એક સાથે સાચાં બનાવીશકાય$?$
વિધાન $p \rightarrow \sim( p \wedge \sim q )$ ને સમતુલ્ય વિધાન ...... છે
વિધાન $p$ અને $q$ માટે નીચેના સંયુક્ત વિધાનો આપેલ છે :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
તો નીચેના પૈકી કયું વિધાન સત્ય છે?
"જો ચોરસની બાજુને બમણી કરવામાં આવે તો તેનું ક્ષેત્રફળ ચારગણું થાય " આ વિધાનનું સામાનાર્થી પ્રેરણ ............... થાય
તાર્કિક વિધાન $[ \sim \,( \sim \,P\, \vee \,q)\, \vee \,\left( {p\, \wedge \,r} \right)\, \wedge \,( \sim \,q\, \wedge \,r)]$ =