The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to

  • [JEE MAIN 2022]
  • A

    $q \rightarrow\left(p^{\wedge} q\right)$

  • B

    $p \rightarrow q$

  • C

    $p \rightarrow(p \vee q)$

  • D

    $p \rightarrow(p \rightarrow q)$

Similar Questions

Which of the following is a statement

Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and $\mathrm{D}$ be four non-empty sets. The contrapositive statement of "If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{D},$ then $\mathrm{A} \subseteq \mathrm{C}^{\prime \prime}$ is 

  • [JEE MAIN 2020]

Consider the following statements:

$P :$ Ramu is intelligent

$Q $: Ramu is rich

$R:$ Ramu is not honest

The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.

  • [JEE MAIN 2022]

Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [JEE MAIN 2013]

The logically equivalent proposition of $p \Leftrightarrow q$ is