यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =
$4$
$-4$
$-6$
$13\over2$
यदि तीन वृत्तों ${x^2} + {y^2} - 2{\lambda _i}\,x = {c^2},(i = 1,\,2,\,3)$ के केन्द्रों की मूलबिन्दु से दूरियाँ गुणोत्तर श्रेणी में हों, तब वृत्त ${x^2} + {y^2} = {c^2}$ पर किसी बिन्दु से उन पर खींची गयीं स्पर्श रेखाओं की लम्बाइयाँ होंगी
युगल स्पर्श रेखायें मूल बिन्दु से वृत्त ${x^2} + {y^2} + 20(x + y) + 20 = 0$ पर खींची गयी हैं। युगल स्पर्श रेखाओं का समीकरण है
रेखा $(x - a)\cos \alpha + (y - b)$ $\sin \alpha = r$, वृत्त ${(x - a)^2} + {(y - b)^2} = {r^2}$ की एक स्पर्श रेखा होगी
रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है
बिन्दु $(0, 0)$ से वृत्त ${x^2} + {y^2} + 2x + 6y - 15 = 0$ पर खींची जा सकने वाली स्पर्श रेखाओं की संख्या है