माना वृत्त $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}+10 \mathrm{y}-15=0$ के बिन्दु $\mathrm{A}(4,-11)$ व $\mathrm{B}(8,-5)$ पर खींची गई स्पर्श रेखाएँ बिन्दु $\mathrm{C}$ पर मिलती है। उस वृत्त, जिसका केन्द्र $\mathrm{C}$ हैं एवं $\mathrm{A}$ व $\mathrm{B}$ को मिलाने वाली रेखा जिसकी स्पर्श रेखा है की त्रिज्या है:
$\frac{3 \sqrt{3}}{4}$
$2 \sqrt{13}$
$\sqrt{13}$
$\frac{2 \sqrt{13}}{3}$
माना $r$ त्रिज्या के वृत्त के व्यास $PR$ के सिरों पर स्पर्श रेखायें $PQ$ तथा $RS$ हैं। यदि $PS$ तथा $RQ$, वृत्त की परिधि के बिन्दु $X$ पर प्रतिच्छेदित हो, तो $2r$ बराबर है
$y - x + 3 = 0$, बिन्दु $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ पर किस वृत्त का अभिलम्ब है
बिन्दु $(-1,2)$ से वृत्त ${x^2} + {y^2} + 2x - 4y + 4 = 0$ पर डाली जाने वाली स्पर्श रेखाओं की संख्या है
माना $\mathrm{O}$ मूलबिन्दु है तथा $\mathrm{OP}$ और $\mathrm{OQ}$ वृत्त $x^2+y^2-6 x+4 y+8=0$ के बिन्दुओं $P$ तथा $Q$ पर स्पर्श रेखाएं हैं। यदि त्रिभुज $\mathrm{OPQ}$ का परिवृत्त, बिन्दु $\left(\alpha, \frac{1}{2}\right)$ से होकर जाती है, तो $\alpha$ का एक मान है
यदि रेखा $3x + 4y - 1 = 0$ वृत्त ${(x - 1)^2} + {(y - 2)^2} = {r^2}$ को स्पर्श करती है, तो $r$ का मान होगा