$y - x + 3 = 0$, बिन्दु $\left( {3 + \frac{3}{{\sqrt 2 }},\frac{3}{{\sqrt 2 }}} \right)$ पर किस वृत्त का अभिलम्ब है
${\left( {x - 3 - \frac{3}{{\sqrt 2 }}} \right)^2} + {\left( {y - \frac{{\sqrt 3 }}{2}} \right)^2} = 9$
${\left( {x - 3 - \frac{3}{{\sqrt 2 }}} \right)^2} + {y^2} = 6$
${(x - 3)^2} + {y^2} = 9$
${(x - 3)^2} + {(y - 3)^2} = 9$
यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा
वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
यदि किसी वृत्त का केन्द्र $(2, 3)$ एवं एक स्पर्श रेखा $x + y = 1$ है, तो इस वृत्त का समीकरण है
बिन्दु $(4, 5)$ से वृत्त ${x^2} + {y^2} + 2x - 6y = 6$ पर खींची स्पर्श रेखा की लम्बाई है