Let the system of linear equations $x +2 y + z =2$, $\alpha x +3 y - z =\alpha,-\alpha x + y +2 z =-\alpha$ be inconsistent. Then $\alpha$ is equal to
$\frac{5}{2}$
$\frac{7}{2}$
$-\frac{7}{2}$
$-\frac{5}{2}$
Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(\mathrm{k}, 0),(4,0),(0,2)$
A root of the equation $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ is
The value of $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0 $ is equal to
For real numbers $\alpha$ and $\beta$, consider the following system of linear equations:
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$. If the system has infinite solutions, then $\alpha+\beta$ is equal to $.....$
If the system of linear equations $x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to