For real numbers $\alpha$ and $\beta$, consider the following system of linear equations:
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$. If the system has infinite solutions, then $\alpha+\beta$ is equal to $.....$
$4$
$5$
$6$
$7$
If ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ are in $G.P.$ then $\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\
{{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}}
\end{array}} \right|$ is equal to
If $[x]$ denotes the greatest integer $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$
$[cot \,\theta ] x + y = 0$
The remainder when the determinant $\left|\begin{array}{lll} 2014^{2014} & 2015^{2015} & 2016^{2016} \\ 2017^{2017} & 2018^{2018} & 2019^{2019} \\ 2020^{2020} & 2021^{2021} & 2022^{2022} \end{array}\right|$ is divided by $5$ is
If the system of equations $ax + y + z = 0 , x + by + z = 0 \, \& \, x + y + cz = 0$ $(a, b, c \ne 1)$ has a non-trivial solution, then the value of $\frac{1}{{1\, - \,a}}\,\, + \,\,\frac{1}{{1\, - \,b}}\,\, + \,\,\frac{1}{{1\, - \,c}}$ is :
Evaluate $\Delta=\left|\begin{array}{ccc}0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0\end{array}\right|$