Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(\mathrm{k}, 0),(4,0),(0,2)$
$0,3$
$0,5$
$0,8$
$0,9$
If $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ and $a + b + c \ne 0$, then $x$ is equal to
If $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ then for all $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right),$ det $(A)$ lies in the interval
Find equation of line joining $(1,2)$ and $(3,6)$ using determinates
The number of values of $\alpha$ for which the system of equations: $x+y+z=\alpha$ ; $\alpha x+2 \alpha y+3 z=-1$ ; $x+3 \alpha y+5 z=4$ is inconsistent, is