A root of the equation $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ is

  • A

    $6$

  • B

    $3$

  • C

    $0$

  • D

    None of these

Similar Questions

If $a \ne 6,b,c$ satisfy $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0,$then $abc = $

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$is

$\left| {\,\begin{array}{*{20}{c}}1&a&b\\{ - a}&1&c\\{ - b}&{ - c}&1\end{array}\,} \right| = $

if $\left| \begin{gathered}
   - 6\ \ \,\,1\ \ \,\,\lambda \ \  \hfill \\
  \,0\ \ \,\,\,\,3\ \ \,\,7\ \  \hfill \\
   - 1\ \ \,\,0\ \ \,\,5\ \  \hfill \\ 
\end{gathered}  \right| = 5948 $, then $\lambda $  is

The value of $'a'$ for which the system of equation  $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$  has a non-zero solution is :-