माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$

  • [JEE MAIN 2019]
  • A

    $(A, 50 + 46A)$

  • B

    $(A, 50 + 45A)$

  • C

    $(50, 50 + 45A)$

  • D

    $(50, 50 + 46A)$

Similar Questions

यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा   

समान्तर श्रेणी के तीन क्रमागत पद इस प्रकार हैं कि उनका योग $18$ तथा उनके वर्गों का योग $158$ है तब इस श्रेणी का महत्तम पद होगा

$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है

यदि किसी समान्तर श्रेणी के $11$ वें पद का दुगना, उसके $21$ वें पद के $7$ गुने के बराबर हो, तो $25$ वाँ पद होगा

यदि किसी समान्तर श्रेणी के $n$ पदों का योगफल $nA + {n^2}B$, जहाँ $A,B$ नियतांक हैं, है। तो इनका सार्वअन्तर होगा