माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :

  • [JEE MAIN 2023]
  • A

    $220$

  • B

    $210$

  • C

    $200$

  • D

    $105$

Similar Questions

बारंबारता बंटन

चर $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
बारंबारता $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?

  • [JEE MAIN 2020]

$8$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $10$ तथा $13.5$ है। यदि इनमें से $6$ प्रेक्षण $5,7,10,12,14,15$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अन्तर होगा 

  • [JEE MAIN 2020]

यदि बारंबारता बंटन

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.

  • [JEE MAIN 2023]

यदि बारंबारता बंटन

वर्ग : $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $2$ $3$ $x$ $5$ $4$

का माध्य $28$ है, तो इसका प्रसरण है____________.

  • [JEE MAIN 2023]

माना $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{ n }$ के माध्य बहुलक तथा प्रसरण क्रमश: $\bar{x}, M$ तथा $\sigma^{2}$ तथा $d _{ i }=-x_{ i }- a$, $i=1,2, \ldots, n$ हैं, जहाँ $a$ कोई संख्या हैं।

कथन $I$ : $d _{1}, d _{2}, \ldots, d _{ n }$ का प्रसरण $\sigma^{2}$ हैं

कथन $II$ : $d _{1}, d _{2}, \ldots, d _{ n }$ के माध्य तथा बहुलक क्रमाश: $-\bar{x}- a$ तथा $- M - a$ है

  • [JEE MAIN 2014]