ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\,\, = \,\,1$ની નાભિઓમાંથી પસાર થતાં અને $(0, 3)$ કેન્દ્ર ધરાવતા વર્તૂળની ત્રિજ્યા =
જો અતિવલય ${x^2} - {y^2} = 9$ ની એક સ્પર્શબિંદુથી બનતી જીવાનું સમીકરણ $x = 9$ હોય તો તેના સંગત સ્પર્શકની જોડનું સમીકરણ મેળવો.
એક માણસ રમતના મેદાનમાં અંકિત કેડી પર એવી રીતે દોડે છે કે જેથી બે ધજાના દંડાના અંતરનો સરવાળો અચળ $10$ મી રહે છે. જો બંને ધજાના દંડા વચ્ચેનું અંતર $8$ મી હોય, તો માણસના ગતિમાર્ગનું સમીકરણ શોધો.
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$