Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1,( a > b )$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is

  • [JEE MAIN 2025]
  • A
    $\frac{3-2 \sqrt{2}}{3 \sqrt{2}}$
  • B
    $\frac{1-\sqrt{3}}{\sqrt{2}}$
  • C
    $\frac{3-2 \sqrt{2}}{2 \sqrt{3}}$
  • D
    $\frac{1-2 \sqrt{2}}{\sqrt{3}}$

Similar Questions

If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$  is twice the area of the ellipse, then the eccentricity of the  ellipse is

Tangents at extremities of latus rectum of ellipse $3x^2 + 4y^2 = 12$ form a rhombus of area (in $sq.\ units$) -

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .

  • [JEE MAIN 2021]

The product of the lengths of perpendiculars from the foci on any tangent to the ellipse $3x^2 + 5y^2 = 1$, is