જો અતિવલય ${x^2} - {y^2} = 9$ ની એક સ્પર્શબિંદુથી બનતી જીવાનું સમીકરણ $x = 9$ હોય તો તેના સંગત સ્પર્શકની જોડનું સમીકરણ મેળવો.
$9{x^2} - 8{y^2} + 18x - 9 = 0$
$9{x^2} - 8{y^2} - 18x + 9 = 0$
$9{x^2} - 8{y^2} - 18x - 9 = 0$
$9{x^2} - 8{y^2} + 18x + 9 = 0$
ધારોકે ઉપવલય $\frac{x^2}{36}+\frac{y^2}{4}=1$ પર ના બિંદુ $(3 \sqrt{3}, 1)$ પાસે ના સ્પર્શક અને અભિલંબ $x$-અક્ષને અનુક્રમે બિંદુ $A$ અને $B$ માં મળે છે. ધારોકે $AB$ ને વ્યાસ તરીકે લેતા વર્તુળ $C$ દોરી શકાય છે અને રેખા $x=2 \sqrt{5}$ એ $\alpha^2-\beta^2=........$
ઉપવલયની બે નાભિ વચ્ચેનું અંતર $6$ તથા તેની ગૈાણ અક્ષની લંબાઇ $8 $ હોય તો $e$ મેળવો.
ઉપવલયનો નાભિલંબ $10$ છે અને ગૌણઅક્ષની લંબાઈ નાભિઓ વચ્ચેના અંતર બરાબર હોય તો ઉપવલયનું સમીકરણ મેળવો.
જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{a^2}\,\, + \;\,1}}\,\, + \;\,\frac{{{y^2}}}{{{a^2}\,\, + \;\,2}}\,\, = \,\,1$ ની ઉત્કેન્દ્રીતા $\frac{1}{{\sqrt 6 }}, $ હોય, તો ઉપવલય નો નાભિલંબની લંબાઈ મેળવો.
જો ઉપવલય $x^{2}+4 y^{2}=4$ નો સ્પર્શકએ મુખ્ય અક્ષના અંત્ય બિંદુ આગળ ના સ્પર્શકોને બિંદુ $\mathrm{B}$ અને $\mathrm{C}$ આગળ મળે છે તો વર્તુળ કે જેનો વ્યાસ $\mathrm{BC}$ હોય તે .. . બિંદુમાંથી પસાર થાય.