જો પાંચ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{24}{5}$ અને $\frac{194}{25}$ હોય તથા પ્રથમ ચાર અવલોકનોનું મધ્યક $\frac{7}{2}$ હોય, તો પ્રથમ ચાર અવલોકનોનું વિચરણ......................થાય.
$\frac{4}{5}$
$\frac{77}{12}$
$\frac{5}{4}$
$\frac{105}{4}$
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =
$10$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.
આપેલ માહિતીમાં $n$ અવલોકનો ${x_1},{x_2},......,{x_n}.$ છે જો $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}} = 9n$ અને $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}} = 5n $ હોય તો આ માહિતીનો પ્રમાણિત વિચલન મેળવો
$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
પ્રયોગના $5$ અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$ છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$ હોય તો બાકીના અવલોકનો કયા હશે ?