સંખ્યાઓ $3,7, x$ અને $y(x>y)$ નો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $10$ છે. તો ચાર સંખ્યાઓ $3+2 \mathrm{x}, 7+2 \mathrm{y}, \mathrm{x}+\mathrm{y}$ અને $x-y$ નો મધ્યક મેળવો.
$10$
$11$
$12$
$48$
આપેલ માહિતી $6,10,7,13, a, 12, b, 12$ નો મધ્યક અને વિચરણ અનુક્રમે $9$ અને $\frac{37}{4}$ હોય તો $(a-b)^{2}$ ની કિમંત મેળવો.
એક ધોરણના $50$ વિદ્યાર્થીઓ દ્વારા ત્રણ વિષયો ગણિત, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્રમાં મેળવેલા ગુણનો મધ્યક અને પ્રમાણિત વિચલન નીચે પ્રમાણે છે :
વિષય |
ગણિત | ભૌતિકશાસ્ત્ર |
રસાયણશાસ્ત્ર |
મધ્યક | $42$ | $32$ | $40.9$ |
પ્રમાણિત વિચલન | $12$ | $15$ | $20$ |
કયા વિષયમાં સૌથી વધુ ચલન અને કયા વિષયમાં સૌથી ઓછું ચલન છે ?
નીચે આપેલ માહિતી માટે વિચરણ અને પ્રમાણિત વિચલન શોધો :
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
$2n$ અવલોકનની એક શ્રેણી આપેલ છે,તે પૈકી $n$ અવલોકન $a$ છે અને બાકીના અવલોકન $-a$ છે.જો પ્રમાણિત વિચલન $2$ હોય તો $|a| =$
જો આપેલ આવૃતિ વિતરણનો મધ્યક અને વિચરણ અનુક્રમે $9$ અને$15.08$ છે તો $\alpha^2+\beta^2-\alpha \beta$ ની કિમંત મેળવો.
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |