ધારોકે $12$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{9}{2}$ અને $4$ છે પછી એવું જોવામાં આવ્યું કે બે અવલોકનો $7$ અને $14$ ને બદલે અનુક્રમે $9$ અને $10$ ગણતરીમાં લેવામાં આવ્યા હતા. જો સાચુ વિયરણ $\frac{m}{n}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે,તો $m + n =.........$
$316$
$314$
$317$
$315$
નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?
ગુણ |
$10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
સમૂહ $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
સમૂહ $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
સંખ્યાઓ $a, b, 8, 5, 10 $ નો મધ્યક $6$ અને વિચરણ $6.80 $ હોય તો નીચે આપેલ પૈકી કઇ એક $a $ અને $b $ માટે શક્ય કિંમત છે ?
ધારો કે અવલોકનો $\mathrm{x}_{\mathrm{i}}(1 \leq \mathrm{i} \leq 10)$ એ સમીકરણો $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)=10$ અને $\sum\limits_{i=1}^{10}\left(x_{i}-5\right)^{2}=40$ નું સમાધાન કરે છે. જો $\mu$ અને $\lambda$ એ અનુક્રમે અવલોકનો $\mathrm{x}_{1}-3, \mathrm{x}_{2}-3, \ldots ., \mathrm{x}_{10}-3,$ નો મધ્યક અને વિચરણ હોય તો ક્રમયુક્ત જોડ $(\mu, \lambda)$ મેળવો.
$2, 4, 6, 8, 10$ નું વિચરણ શોધો.
$30$ વસ્તુઓને અવલોકવામાં આવે છે જેમાંથી $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} - d$, $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} $ અને બાકી રહેલ $10$ દરેક વસ્તુઓ માટે $\frac{1}{2} + d$ છે જો આપેલ માહિતીનો વિચરણ $\frac {4}{3}$ હોય તો $\left| d \right|$ =