माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :
$\frac{\sqrt{3}}{2}$
$\frac{1}{2}$
$\frac{1}{\sqrt{2}}$
$\frac{\sqrt{3}}{4}$
माना दीर्घवृत्त $\frac{ x ^2}{2}+\frac{ y ^2}{4}=1$ के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाएँ बिंदु $R (\sqrt{2}, 2 \sqrt{2}-2)$ पर मिलती हैं। यदि दार्घवृत्त के ॠणात्मक दीर्घ अक्ष पर नाभि $S$ है, तो $SP ^2+ SQ ^2$ बराबर है
यदि दो दीर्घवृत्तों $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ तथा $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की उत्केन्द्रतायें बराबर हो, तो $\frac{a}{b}$ का मान होगा
उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$